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Abstract

A proposed near-wall t 2±et two-equation model for turbulent heat transport reproduces the correct near-wall
behavior of temperature under various wall thermal boundary conditions. In this model, a mixing timescale is
introduced to model the production term of et equation, and a more convenient boundary condition for et under the
uniform wall heat ¯ux is suggested. The present model is tested through application to turbulent heat transfer for
channel ¯ow. Predicted results are compared with direct numerical simulation (DNS) data. The near-wall t 2±et two-
equation model predicts reasonably well the distributions of the time-mean temperature, normal turbulent heat ¯ux,

temperature variance, dissipation rate and their near-wall budgets. 7 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Numerical prediction of turbulent heat transfer

phenomena has attracted substantial interest over the
past few decades. A set of di�erential equations for the
Reynolds stress �ÿuiuj� and turbulent heat ¯ux �ÿuit�
should be solved simultaneously for the time-mean vel-
ocity and temperature.
The k±e turbulence model for velocity ®eld is widely

used in engineering applications [1±4]. As for scalar
turbulence, the conventional method is the zero-
equation heat transfer model, in which the eddy di�u-
sivity for heat at is obtained by at=nt/Prt with the tur-

bulent Prandtl number Prt as a constant. However, no
universal value of Prt was found. Nagano and Kim [5]
developed a two-equation model for the thermal ®eld,

in which eddy di�usivity for heat at was modeled using

the temperature variance t 2 and its dissipation rate et,
together with k and e. Youssef et al. [6] modi®ed the

NK model to determine the wall-limiting behavior of

turbulence quantities under various wall thermal con-

ditions. However, it is not so convenient to calculate

complex heat transfer problems with uniform wall heat

¯ux. Consequently, further improvement of their

model would be needed.

In the present study, we will develop a new near-

wall t 2±et model. Using the near-wall behavior of tur-

bulence quantities, we modify the modeling of the pro-

duction term in et equation, and propose a new

boundary condition for et under uniform wall heat

¯ux, which is more convenient for complex heat trans-

fer, as compared with that of Youssef et al. [6]. Both

the low-Reynolds-number k±e turbulence model [3]

and our proposed two-equation heat transfer model
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were applied to study convective heat transfer for a

two-dimensional turbulent channel ¯ow.

2. Two-equation model for velocity ®eld

The governing equations for an incompressible vel-
ocity ®eld with a low-Reynolds-number k±e model can
be written as:
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In the present study, the low-Reynolds-number k±e
model by Abe et al. [3] is adopted, i.e. the model func-
tions and constants are as follows:
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Nomenclature

cp speci®c heat at constant
pressure

Cl, Cp1, Cp2, Cd1, Cd 2 turbulence model constants

for the temperature ®eld
Cm, Ce1, Ce2 turbulence model constants

for the velocity ®eld

fm, fe turbulence model functions
for the velocity ®eld

fl, fd1, fd 2 turbulence model functions

for the temperature ®eld
k turbulence kinetic energy
p mean pressure
Pr, Prt molecular and turbulent

Prandtl number, respectively
qw wall heat ¯ux
R timescale ratio, tt/tu
Rt turbulent Reynolds number,

k 2/ne
Re turbulent Reynolds number,

y(ne )1/4/n
tt friction temperature, qw/

rcput
t 2 temperature variance
T, t mean and ¯uctuating tem-

perature, respectively
T+ dimensionless temperature,

(TwÿT )/tt
ut friction velocity, (tw/r )

1/2

Ui, ui mean and ¯uctuating vel-
ocity, respectively

x, y coordinates in streamwise

and wall normal directions
ÿuiuj Reynolds stress tensor
ÿuit Reynolds heat ¯ux vector

y+ dimensionless distance from
wall, uty/n

Greek symbols
a, at molecular and turbulent

thermal di�usivities, respect-
ively

dij Kronecker delta
e dissipation rate of k
et dissipation rate of t 2

n, nt molecular and turbulent
viscosities, respectively

sk, se, sh, sf turbulence model constants

for di�usion of k, e, t 2, et
t time
tw wall shear stress

tm mixing timescale
tu, tt timescales of velocity and

temperature

Subscripts
w wall
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Cm � 0:09, sk � 1:4, se � 1:4

Ce1 � 1:5, Ce2 � 1:9 �7�

3. Formulation of a two-equation model for the thermal

®eld

3.1. Modeling of temperature variance and its
dissipation rate equations

The governing equations for turbulent heat transport
are expressed as:
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Here, the eddy di�usivity for heat at is associated

with temperature variance, t 2, and its dissipation rate,
et. Cl denotes the model constant and fl is the model
function including the near-wall e�ect in a thermal
®eld, to be described later.

The exact governing equations of t 2 and et are given
by [7]
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In Eqs. (11) and (12), the turbulent di�usion terms
ujt 2 and uje 0t are approximated, respectively, as [5,6]
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We follow Youssef et al. [6] to take simply the

model constants sh and sf both equal to 1.0.
The production term in Eq. (12) is given as
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It has more time and generation-rate scales to be
determined [9,10]. Jones and Mansonge [11] and
Nagano and Kim [4] try to take the following form
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respectively. Then, both the production rates for vel-
ocity and temperature are used. Newman et al. [12]

used only the thermal production rate and thermal
timescale. Elgobashi and Launder [13] expressed it as
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In the present study, instead of Eq. (15), a mixing
timescale and only the thermal production rate are
used to model the production term in Eq. (12) as
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The last term on the right hand side of Eq. (12)

stands for destruction due to ®ne-scale turbulence in-
teraction, which is dependent on both the velocity and
thermal timescales. Launder [7] suggested using two

terms proportional to eet/k and e 2t =t 2 [7], which are
adopted by many investigators [11±14] also. It reads
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The modeled governing equations can be ®nally
described as
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3.2. Near-wall modeling and model constants

Using the thermal±mechanical timescale ratio R=tt/
tu, Eq. (10) may be rewritten as

at � Clfl
k 2

e
�2R�m �23�

Considering that the ratio between the temperature-
and velocity-timescales for dissipative motions is rep-

resented by (R/Pr )1/2 [15], the following relation holds
in the vicinity of the wall [8]

nt=atAR1=2: �24�
Taking into account fm, we write fl as

fl �
�
1ÿ exp

�
ÿ Re

Al

�� 2
"
1� Bl

R3=4
t

�2R�0:5
�2R�m

#
�25�

The near-wall behavior of turbulent quantities can
be determined using a Taylor series expansion with
respect to y:
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From Eq. (26), in the vicinity of the wall, vtAy3

(under uniform wall temperature) vtAy 2 (under uni-

form wall heat ¯ux) must be satis®ed. Submitting Eqs.
(23), (25) and (26) into Eq. (9), the turbulent heat ¯ux
vt, obtained from Eq. (25), satis®es the near-wall limit-
ing behavior under the thermal boundary conditions

with and without wall temperature ¯uctuations,
regardless of the mixing timescale tm. Hence, it is con-
venient to use di�erent tm in Eq. (25). For the sake of

simplicity, we choose tm=tu
0.5(2tt)

0.5, as used by Som-
mer et al. [9]. Thus,
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The direct numerical simulation (DNS) data [16,17]
indicates that the molecular di�usion term balances
with the dissipation term at the wall in et equation.

From Eq. (11), we have at y=0:
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Considering the limiting behavior of wall turbulence,
fd2A y 2 and fd1A y 2 (under uniform wall temperature)
of fd1 A y n with n > 0 (under uniform wall heat ¯ux)

need to satisfy Eq. (29), the following equations are
proposed to meet the requirements.
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with fe=1ÿ0.3 exp{ÿ(Rt/6.5)
2.

The model constants can be, therefore, determined
in the following way.

First, Cl, Cd1, Cd2, sh and sf are set to 0.1, 2.0, 0.9,
1.0, and 1.0, respectively, following the lead of the
model by Youssef et al. [6]. The constant Cp1 is to be

determined with the relation for the constant-stress
and constant-heat-¯ux layer [5,6]:

Cp1 � Cd1������
2R
p � Cd2 ÿ �k

2=Prt�
sf

������
Cm

p �32�

Then, Cp1=2.34 by substituting the standard value

of Cm, Cd1, Cd2, Prt=0.9, sf and k=0.39±0.41.
In summary, the model constants in the present

model are given as follows:

Cl � 0:1, Cd1 � 2:0, Cd2 � 0:9

Cp1 � 2:34, sh � 1:0, sf � 1:0 �33�

4. Numerical scheme and boundary conditions

The governing equations are discretized by means of
the ®nite volume. The QUICK scheme is used for the

approximation of convection terms and central di�er-
ence for di�usion terms, with SIMPLEC [18] algorithm
to handle pressure±velocity coupling. The set of discre-

tized linear algebraic equations is solved by ADI.
The boundary conditions at the wall ( y = 0) for a

velocity ®eld are U=V=k = 0 and ew � n@ 2k=@y 2 or
equivalently ew � 2n�@ ���

k
p
=@y� 2: The wall thermal

boundary conditions are taken as:
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for uniform wall heat ¯ux, and
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for adiabatic wall.
We derive the boundary condition for et according

to di�erent wall thermal conditions. For uniform wall
temperature, from Eq. (26), a ¯uctuating temperature
near the wall can be expressed as
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uniform wall temperature.
For uniform wall heat ¯ux and adiabatic wall, wall

heat ¯ux would be a constant or 0. Hence, from Eq.
(26), the near wall behavior of ¯uctuating temperature
will be

t � tw � d2y
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Substituting Eq. (37) into the de®nition of et:et �
a�@ t=@x i � 2, we obtain
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In Eq. (38), no linear term exists. So, we can use the
following relation as the boundary condition for et
under a uniform wall heat ¯ux and an adiabatic wall:

Fig. 1. Mean temperature for the case of constant wall heat

¯ux and constant wall temperature.
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This, as compared with etw � a�@
���������������
t 2 ÿ t 2w

q
=@y� 2w given

by Youssef et al. [6], would be more convenient actu-

ally.

5. Results and discussion

To validate the prediction of the proposed model,

we applied it to a thermally and hydrodynamically
fully developed turbulent ¯ow in a two-dimensional
channel [16,17]. The predicted results with two typical
thermal boundary conditions are presented in

Figs. 1±7.
The predicted mean-temperature in the turbulent

boundary layer is plotted in Fig. 1. The predicted pro-

®les for cases of both uniform wall temperature and

uniform wall heat ¯ux are in good agreement with the
theoretical distribution, T+=Pry+, in the viscous sub-
layer, and agree with the law of the wall in the logar-

ithmic region.
The predicted temperature variance t 2 in the thermal

®eld is illustrated in log±log form in Fig. 2, using the

friction temperature to normalize the root-mean-square
temperature variance. The predicted t 2 undergoes a
sharp rise nearby y+=20 in the near-wall region,
which agrees well with the DNS data [16,17]. The pre-

dicted values are much similar to the DNS data in the
turbulent core region. The predicted results in viscous
sublayer for the case of uniform wall heat ¯ux is

slightly larger than DNS data of Kasagi et al. [16], but
seems similar to the result of Youssef et al. [6].
The predicted wall-normal turbulent heat ¯ux ÿvt is

depicted in Fig. 3, which is in good agreement with the

Fig. 2. Temperature variance for the case of constant wall

heat ¯ux and constant wall temperature.

Fig. 3. Near-wall behavior of wall-normal turbulent heat ¯ux.

Fig. 4. Dissipation rate of temperature variance for the case

of constant wall heat ¯ux and constant wall temperature.

Fig. 5. Comparison of predicted results and DNS data for dis-

sipation timescales and their ratio for the case of constant

wall heat ¯ux.
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DNS data [16,17] for both thermal boundary con-

ditions except in very near wall region, but agrees well

with the result of Youssef et al. [6] in the viscous sub-

layer.

The prediction of the dissipation rate of the tem-

perature variance et is depicted in Fig. 4. As shown, in

the vicinity of the wall, the predicted results for both

wall thermal conditions tw=constant and qw=con-

stant, deviate from the DNS data [16], which is also

shown by that of Youssef et al. [6], but predicted fair

well in the region of y+>20.

Fig. 5 presents the predicted results of the velocity

dissipation timescale tu, the temperature dissipation

timescale tt, and their ratio R=tt/tu, for the case of

uniform wall heat ¯ux. tu would be larger than tt over
the whole cross section of channel and both timescales

increase with increasing y+. These distributions accord
qualitatively well with the DNS data [16]. The di�er-

ence in the timescale ratio, R, between DNS data and
predicted result is observed. The timescale ratio R
keeps a ®nite value at the wall for DNS data [16].

While, the predicted timescale ratio R increases signi®-
cantly toward the wall and becomes in®nite at the
wall. This may be consistent with the prediction based

on the Taylor series expansion.
The predicted budgets of temperature variance t 2

and its dissipation rate et are depicted in Figs. 6 and 7,

respectively, which are compared with that of [9] and
the DNS data [16]. In general, the present model gives
a better prediction of the budgets of t 2 and et.

Fig. 6. The budget of temperature variance for the case of

constant wall heat ¯ux, (a) present prediction; (b) prediction

of Sommer et al. [9]; (c) DNS data [16].

Fig. 7. The budget of the dissipation rate of temperature

variance for the case of constant wall heat ¯ux, (a) present pre-

diction; (b) prediction of Sommer et al. [9]; (c) DNS data [16].
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6. Conclusions

A new near-wall t 2±et two-equation heat transfer
model has been derived in this study. It is based on
the transport equations for temperature variance t 2

and its dissipation rate et. A modi®cation for modeling
et equation is proposed, which use both velocity and
thermal timescales and only the thermal production

rate to describe the production term in et equation.
Near-wall corrections are obtained by analyzing the
near-wall limiting behavior of turbulent quantities.

Eddy di�usivity for heat is used for relating turbulent
heat ¯uxes to mean temperature ®eld. This involves
both velocity and thermal timescales and reproduces
the near-wall limiting behavior of normal heat ¯ux

under di�erent thermal boundary conditions.
Based on Taylor series expansion, the boundary con-

dition for et under uniform wall heat ¯ux is proposed,

which is more convenient than that of previous
research for complex heat transfer [6].
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